A Theoretical Study of Correlation between Hydrogen-Bond Stability and *J*-Coupling through a Hydrogen Bond

by Shun-ichi Kawahara^a), Chojiro Kojima^b), Kazunari Taira^a), and Tadafumi Uchimaru^{*a})

^a) National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan (phone: +81-298-61-4800; fax: +81-298-61-4487; e-mail: t-uchimaru@aist.go.jp)
^b) Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan

trans-Hydrogen-bond hyperfine splitting *via* magnetic interaction, which is observed as *J*-coupling in NMR experiments, was theoretically studied. *trans*-Hydrogen-bond hyperfine splitting should be closely related to the orbital interaction between the lone-pair orbital of the H-bond acceptor and the antibond orbital of the H-bond donor. A linear relationship was observed between magnetic interaction hyperfine splitting through a H-bond and the H-bond strength. The relationship was dependent on the type of the nucleus forming the H-bond; linear correlation was observed in N–H…O/N type or O–H…N type H-bonded complexes, but not in O–H…O type H-bonded complexes.

Introduction. – The H-bond is a most important molecular interaction, and it has been widely studied [1-6]. H-Bond stabilization is attributable mainly to electrostatic interaction [4-6]; nevertheless, poor correlation was observed between the H-bond energy and atomic charges of the H-bond-forming atoms $[7-10]^1$). Recently, *Dingley* and *Grzesiek* found *trans*-H-bond *J*-coupling $({}^{2h}J_{NN})$ in nucleic acid base pairs [11]. With this finding, *trans*-H-bond *J*-coupling has attracted much attention [11-27]. Although many theoretical studies regarding *trans*-H-bond *J*-coupling have been reported [16-27], there are few systematic studies on the relationship between the *trans*-H-bond-orbital (NBO) [28] analysis of *trans*-H-bond *J*-coupling, and the relationship between the *J*-coupling and the H-bond strength in model complex systems containing a single H-bond.

Computational Methods. – *Fermi*-contact (FC) contributions are the most important ones for the theoretical evaluation of the *J*-coupling value, and the other contributions are negligible in most of the cases [21]. *Del Bene et al.* reported theoretically estimated total and FC coupling constants for some H-bond complexes, and total coupling constants were almost completely reproduced by the FC contribution [18]. Herein, only FC contributions were calculated by the finite perturbation theory [29][30]. The *J*-coupling and reduced coupling constants (*K*) evaluated according to *Eqns. 1* and 2 [31][32].

¹) *Platts* reported simple and good methods to estimate H-bond-donor ability (α) [8] and H-bond acceptability (β) [9]. However, the values of α and β cannot be compared directly.

Helvetica Chimica Acta - Vol. 86 (2003)

$$\begin{aligned} J_{\rm XY} &= (\mu_0/4\pi)^2 \cdot (h/2\pi) \cdot (8\pi\beta/3)^2 \cdot a_0^{-6} \cdot \gamma_{\rm X} \cdot \gamma_{\rm Y} \cdot \Delta/\lambda \\ &= 1.05828 \times 10^{-14} \cdot \gamma_{\rm X} \cdot \gamma_{\rm Y} \cdot \Delta/\lambda \ [\rm Hz] \end{aligned}$$
(1)

$$K = 1.05828 \times 10^{-14} \cdot \Delta/\lambda \tag{2}$$

where γ_X and γ_Y [rad/T · s] are gyromagnetic ratios for nuclei X and Y, λ is an applied spin-density perturbation, and Δ is the production of unpaired electron spin density (= FC term, [au]). The Δ value is in proportion to the λ value; thus, hyperfine splitting, Δ/λ , is independent of the strength of the perturbation. All coupling calculations were performed with FC perturbation (λ) of 0.01 au.

The *J*-coupling depends on the gyromagnetic ratios of the nuclei; thus, the *J*-coupling cannot be a direct indicator of the strength of magnetic interaction for different nucleus combinations. On the other hand, hyperfine splitting $(\Delta/\lambda \text{ in } Eqn. 1)$ and reduced coupling constants (*K*) are magnetic-interaction-independent of the gyromagnetic ratio. Hereafter, we discuss the interaction intensity by use of Δ/λ instead of *J*-coupling, to compare the magnitude of magnetic interactions between the different nucleus combinations.

We refer to a H-bond donor molecule and a H-bond acceptor molecule as A-H and B, respectively. Meanwhile, X and Y represent a H-bond-donor heavy atom and a H-bond acceptor heavy atom, respectively. For the HO-H… pyridine complex, X and Y are the O-atom in the H₂O molecule and the N-atom in the pyridine molecule, respectively. A-H and B in this study are listed below.

A-H=HO-H, MeO-H, PhO-H, HCO_2-H , H_2N-H , pyrrole, PhNH-H, HCONH-H

$B = H_2O$, H_2CO , H_3N , pyridine, HCN

The structures of the H-bond donors, the acceptors, and the complexes were optimized with calculations at the B3LYP/6-311G** level [33]. The following properties were evaluated by using the B3LYP/6-311G**-level-optimized structures: The H-bond energies ($-\delta E$ [kcal/mol]; the larger value of $-\delta E$ indicates the stronger H-bond) were evaluated at the B3LYP/6-311 + G**-level calculations. The basis-set super-position error (BSSE) was not corrected, because the BSSE at this calculation level is very small²). Moreover, the error, which originates from the incompleteness of the basis set employed, should be comparable for all of the H-bonded complexes examined in the present study. The NMR shielding tensors were calculated at the HF/6-311 + G** level, based on the gauge-including atomic orbitals (GIAO) [31]. The FC perturbations were calculated at the UB3LYP/6-311 + G** level, based on the finite perturbation theory [29][30]. The λ value was recommended for 0.001 [34]; however, the Δ value is in proportion to the λ value, and Δ/λ is independent of the λ value. When the Δ value is small, the numerical accuracy becomes low; therefore, we used a λ value of 0.01 for the calculations.

²) For example, BSSE-corrected H-bond energy of cytosine-pyrimidin-6-one at this level calculation was - 18.66 kcal/mol, while only 0.68 kcal/mol BSSE was observed in the system (unpublished result).

NBO Analysis was carried out to investigate orbital interaction for *trans*-H-bond hyperfine splitting [26] [35–38] at the B3LYP/6-311G**- and UB3LYP/6-311G**-level calculations without and with FC perturbations, respectively. The molecular-interaction stabilization energies (E^2 [kcal/mol]) described by donor-acceptor NBO interaction was calculated by the second-order perturbation-energy analysis with the NBO basis, in the B3LYP/6-311G**-level calculations. The secondary orbital interactions, which have 0.03 kcal/mol or larger stabilization, were considered. Stabilization energy, $E^2(BD^*(X-H) \leftarrow LP(:Y))$, resulting from charge transfer from the lone pair (LP) of the H-bond acceptor {LP(:Y)} to the two-center antibond orbital (BD*) of the H-bond donor [BD*(X-H)] was calculated. Moreover, the ratio of $E^2(BD^*(X-H) \leftarrow LP(:Y))$ to the sum of all the E^2 values { $\Sigma(A-B)$ } was also considered. $\Sigma(A-B)$ includes orbital interactions in both $A-H \leftarrow B$ and $A-H \rightarrow B$ interactions (the arrow shows the electron donor-acceptor direction).

Upon applying perturbation ($\lambda = 0.01$) in the UB3LYP/6-311G**-level calculations, natural localized molecular orbitals (NLMO) were utilized to express the following properties. *1*) The sum of the differences in the occupation of the α and the β spin electron in each orbital, which corresponds to the total spin density on the X and Y atoms. 2) The ratio of the spin density of LP of the Y atom to the total spin density of Y atom (LP/Y). 3) The ratio of the spin density of X–H antibonding orbital BD*(X–H) to the total spin density of the X atom (X*H/X). The calculations were carried out with the GAUSSIAN 94 program [39].

Results and Discussion. – A summary of the calculations is shown in the *Table*. As shown in the $E^2(BD^*(X-H) \leftarrow LP(:Y))/\Sigma(A-B)$ column of the *Table*, the orbital interaction between LP of the H-bond acceptor (:Y) and BD* of the H-bond donor (X-H) has the largest contribution: over 80% of all the second-order perturbation molecular-interaction energies for most of the complexes. It is expected that total molecular-interaction energy (δE) correlates well with the LP(:Y) \rightarrow BD*(X-H) interaction energy { $E^2(BD^*(X-H) \leftarrow LP(:Y)$ }, kcal/mol). As shown in *Fig. 1*, the $-\delta E$ correlates with $E^2(BD^*(X-H) \leftarrow LP(:Y))$. The relationship was not influenced by the difference in combination of the types of heavy atoms forming the H-bond.

We examined the spin density of $BD^*(X-H)$ orbital and LP(:Y) orbital (LP:Y). In the *Table*, BD^*/X represents the ratio of the spin density of $BD^*(X-H)$ orbital to the total spin density of the X atom. LP/Y represents the ratio of the spin density of LP(:Y) orbital to the total spin density of the Y atom. In almost all of the cases, more than 80% contribution of the spin density to these two orbitals was observed³). *Wilkens et al.*, reported the NBO analysis of the *trans*-H-bond *J*-coupling of DNA A-T base pair [26]. Based on their report, the delocalized LP(:Y) \rightarrow BD*(X-H) interaction has about half contribution of the whole *J*-coupling, and interaction of the localized NBOs, LP(:Y), and BD(X-H), which corresponds to the steric effect, has the other half contribution of the *J*-coupling. Our results do not conflict with their results for the importance of the contribution of the LP(:Y) \rightarrow BD*(X-H) interaction.

³) The spin density in the s-orbital component of the molecular orbitals is responsible for spin-spin coupling. The s-orbital component in the LP(:Y) → BD*(X−H) interaction has an important role in the *trans*-H-bond hyperfine splitting.

		2nd-Order perturbative energy		Spin density ratio		Hyperfine splitting	H-Bond energy	H-Bond length	Chemical shift
H-Bond type	Complex ^a)	Ratio ^b)	Energy ^c) [kcal/mol]	BD*/X ^d)	LP/Y ^e)	$\Delta/\lambda^{\rm f})$	$-\delta E$ [kcal/mol]	R _{HB} [Å]	δH ^g) [ppm]
	MeOH-OH ₂	0.90	10.66	0.88	0.97	0.014	5.37	2.86	3.83
	HOH-OH ₂	0.89	9.48	0.90	0.93	-0.007	5.55	2.89	4.35
	HOH-fa	0.77	4.06	0.87	0.78	0.042	4.70	2.85	4.09
$O\!-\!H\cdots O$	PhOH-HOH	0.88	13.73	0.91	0.93	0.120	7.12	2.80	8.36
(• in the Figs.)	PhOH-fa	0.91	6.88	0.90	0.84	0.063	5.59	2.87	7.95
	FA-OH ₂	0.91	16.68	0.96	0.95	0.102	8.99	2.75	10.14
	FA-fa	0.92	9.33	0.99	0.86	0.050	7.33	2.82	9.78
	MeOH-NH ₃	0.89	15.24	0.90	0.96	0.302	7.16	2.90	5.53
	MeOH-NCH	0.88	4.05	0.89	0.91	0.075	3.64	3.08	1.84
	MeOH-Py	0.69	10.65	0.87	1.07	0.333	6.51	2.92	5.71
	HOH-NH ₃	0.90	13.18	0.90	0.97	0.231	7.30	2.93	5.84
	HOH-Py	0.77	7.75	0.89	0.95	0.210	5.99	2.89	9.45
$O - H \cdots N$	HOH-NCH	0.66	3.13	0.88	1.41	0.018	3.72	3.11	2.4
$(\circ \text{ in the Figs.})$	PhOH-NH ₃	0.88	20.57	0.94	0.96	0.496	9.01	2.83	10.41
	PhOH-Py	0.88	17.88	0.92	0.91	0.549	8.84	2.83	11.14
	PhOH-NCH	0.74	6.39	0.91	0.94	0.210	4.82	3.02	6.16
	FA-NH ₃	0.90	25.92	0.98	0.97	0.460	11.79	2.79	12.45
	FA-Py	0.90	22.12	0.96	0.92	0.577	11.31	2.78	13.07
	FA-NCH	0.77	8.83	0.97	0.94	0.180	6.81	2.96	7.81
	H ₂ NH-fa	0.66	1.76	0.72	1.44	-0.008	0.86	3.25	2.15
	AN-OH ₂	0.81	6.95	0.92	0.98	0.318	3.88	3.03	6.54
	AN-fa	0.81	2.11	0.87	0.94	0.223	2.90	3.12	6.28
$N-H\cdots O$	Pr-OH ₂	0.92	9.26	0.89	0.91	0.441	5.37	2.95	10.61
(+ in the Figs.)	Pr-fa	0.92	2.39	0.90	0.97	0.259	3.91	3.07	10.24
	Fa-OH ₂	0.91	8.53	0.94	0.97	0.372	5.37	2.96	7.82
	Fa-fa	0.92	2.97	0.92	0.64	0.208	4.01	3.09	7.44
-	H ₂ NH-Py	0.77	3.10	0.86	1.02	0.136	2.27	3.25	9.07
	H ₂ NH-NCH	0.63	1.17	0.84	4.67	0.029	1.51	3.44	1.17
	AN-NH ₃	0.87	10.88	0.92	0.96	0.564	5.27	3.09	7.95
	AN-Py	0.88	8.03	0.90	0.87	0.557	5.09	3.09	8.21
$N - H \cdots N$	AN-NCH	0.71	3.18	0.90	0.94	0.295	2.89	3.27	4.90
$(\times \text{ in the Figs.})$		0.88	13.85	0.93	0.99	0.643	6.88	3.25	12.04
	Pr-Py	0.86	10.93	0.89	0.88	0.653	6.68	3.02	12.41
	Pr-NCH	0.71	4.66	0.90	0.94	0.371	3.91	3.19	8.82
	Fa-NH ₃	0.89	12.77	0.94	0.98	0.555	6.86	3.04	9.26
	Fa-Py	0.90	8.77	0.93	0.90	0.544	6.07	3.08	9.19
	Fa-NCH	0.72	4.28	0.94	1.02	0.317	4.11	3.20	6.02

Table. Calculated NMR and Energy Properties

^a) Abbreviations: Py = pyridine, fa = formaldehyde, FA = formic acid, Fa = formamide, AN = aniline, and Pr = pyrrole. ^b) $E^2(BD^*(X-H) \leftarrow LP(:Y))/\Sigma(A-B)$; an energetic ratio of $BD^*(X-H) \leftarrow LP(:Y)$ interaction for all molecular interaction estimated in second-order perturbation-energy analysis. ^c) $E^2(BD^*(X-H) \leftarrow LP(:Y))$; stabilization energy in the second-order perturbative estimation of lone pair of H-bond acceptor and two-center antibond of H-bond donor. ^d) Ratio of a spin density on BD*(X-H) orbital in total spin density on atom X. ^e) Ratio of a spin density on LP(:Y) orbital (LP/Y) in total spin density on atom Y. ^f) *trans*-H-bond hyperfine spliting. ^g) Chemical shift of H-bond-forming proton (proton of TMS as a standard).

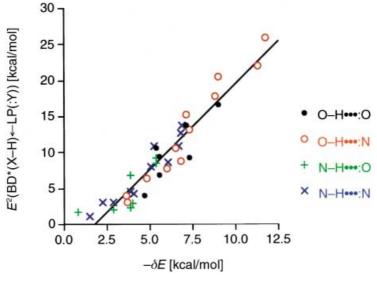


Fig. 1. Relationship between the $-\delta E$ and $E^2(BD^*(X-H) \leftarrow LP(:Y))$ [kcal/mol]

Fig. 2 shows the relationship between the hyperfine splitting, Δ/λ , and the H-bond length ($R_{\rm HB}$ [Å]). As expected from previous findings reported [19][23-27][32], larger Δ/λ values were observed in complexes with shorter H-bonds. Our results

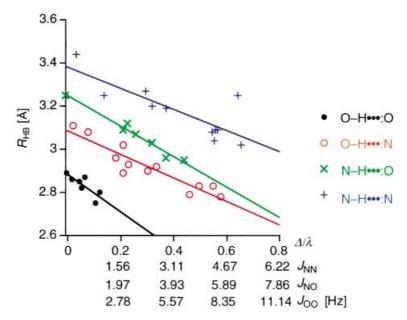


Fig. 2. Relationship between the Δ/λ and the H-bond strength $(-\delta E \text{ [kcal/mol]})$, including the H-bonded complex

indicate a good correlation between Δ/λ and the H-bond length in the same atom combination. For H-bond systems with comparable values of Δ/λ , we can expect that the H-bond length will increase in the following order, $O-H\cdots O < O-H\cdots N < N-H \cdots O < N-H\cdots N$.

Fig. 3 shows the relationship between the Δ/λ and the chemical shift of the H-bond proton. The relationship was extremely vague, and no remarkable trends were observed between the structure of the H-bonded complexes, and the chemical shift of the proton or Δ/λ . Thus, the chemical shift of the proton in the H-bonded complexes would not be a good index of the H-bond strength, at least for our model complexes in the chemical-shift calculations in the HF level of theory.

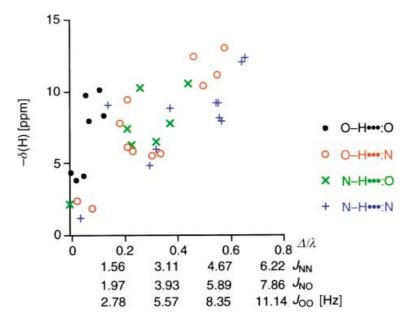


Fig. 3. Relationship between the Δ/λ and the chemical shift of the H-bond proton [ppm]

Fig. 4 shows the relationship between the Δ/λ value and the H-bond strength, $-\delta E$, of A–H…B complexes. We found a good correlation between the Δ/λ value and the $-\delta E$ in the model systems in the N–H…Y H-bond), (*Eqn. 3*), and O–H…N-type H-bond (*Eqn. 4*).

$$-\delta E = 8.44 \cdot \Delta / \lambda - 1.29 \ (r = 0.945) = 8.01 \times 10^{14} \cdot K - 1.29$$

(in kcal/mol, for N-H…N or O) (3)

$$-\delta E = 12.88 \cdot \Delta / \lambda - 3.34 \ (r = 0.895) = 12.23 \times 10^{14} \cdot K - 3.34$$

(in kcal/mol, for O-H…N) (4)

However, for the O-H···O-type H-bonded complex, such a good correlation was not observed between the Δ/λ value and the H-bond strength, $-\delta E$.

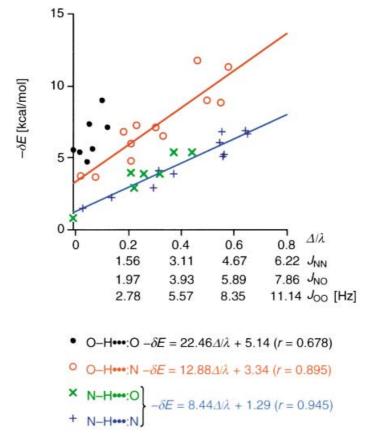


Fig. 4. Relationship between the Δ/λ and the H-bond strength $(-\delta E \text{ [kcal/mol]})$

Therefore, Δ/λ is a good index of the H-bond strength in N-H…N and N-H…O systems. N-H…N and N-H…O H-bond strengths can be compared directly by using the Δ/λ or K values instead of J-coupling values. The O-H…N H-bond strength can be compared with the N-H…N and N-H…O H-bond strengths, after the conversion from Δ/λ to δE according to Eqns. 3 and 4.

Considering the results reported by *Wilkens et al.* [26] and the linear correlation between the Δ/λ and the $-\delta E$, described here, the ratio of the contribution of the LP(:Y) \rightarrow BD*(X-H) interaction and the contribution of the LP(:Y) \rightarrow BD(X-H) interaction for the hyperfine splitting should be almost constant for the H-bonded complexes in this study.

Conclusions. – From the results of natural-bond-orbital (NBO) analysis, the Hbond energy was correlated well with second-order perturbative stabilization energy of the lone pair of the H-bond acceptor and the antibond orbital of the H-bond donor. About 80% of the intermolecular stabilization energies (second-order perturbation energies) originated from these two orbital interactions, in most of the H-bonded complexes. More than 80% of the total spin density was observed in these two orbitals of the H-bond-forming atoms. Therefore, *trans*-H-bond hyperfine splitting should be mainly described by interaction between these two orbitals.

The relationship between magnetic-interaction hyperfine splitting through a Hbond and H-bond strength was dependent on the types of nuclei forming the H-bond. A good linear correlation was observed in the N-H···O/N-type or the O-H···N type H-bonded complexes, but not in the O-H···O-type H-bonded complexes. Thus, the *trans*-H-bond hyperfine splittings between the different nucleus combinations can be compared as an index of the H-bond strength, except for the O-H···O-type H-bonded complexes.

The services and computational time made available by *AIST* and *Tsukuba Advanced Computing Center* (*TACC*) have been essential to this study and are gratefully acknowledged.

REFERENCES

- [1] P. E. S. Wormer, A. van der Avoird, Chem. Rev. 2000, 100, 4109.
- [2] L. J. Prins, D. N. Reinhoudt, P. Timmerman, Angew. Chem., Int. Ed. 2001, 40, 2382.
- [3] G. Gilli, P. Gilli, J. Mol. Struct. 2000, 552, 1.
- [4] K. Morokuma, Acc. Chem. Res. 1977, 10, 294.
- [5] A. P. L. Rendell, G. B. Bacskay, N. S. Hush, Chem. Phys. Lett. 1985, 117, 400.
- [6] W. Chen, M. S. Gordon, J. Phys. Chem. 1996, 100, 14316.
- [7] C. F. Guerra, F. M. Bickelhaupt, Angew. Chem., Int. Ed. 1999, 38, 2942.
- [8] J. A. Platts, Phys. Chem. Chem. Phys. 2000, 2, 973.
- [9] J. A. Platts, Phys. Chem. Chem. Phys. 2000, 2, 3115.
- [10] S.-I. Kawahara, A. Kobori. M. Sekine, K. Taira, T. Uchimaru, J. Phys. Chem. A 2001, 105, 10596.
- [11] A. J. Dingley, S. Grzesiek, J. Am. Chem. Soc. 1998, 120, 8293.
- [12] A. J. Dingley, J. E. Masse, R. D. Peterson, M. Barfield, J. Feigon, S. Grzesiek, J. Am. Chem. Soc. 1999, 121, 6019.
- [13] K. Pervushin, A. Ono, C. Fernandez, T. Szyperski, M. Kainosho, K. Wüthrich, Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 14147.
- [14] N. Juranic, P. K. Ilich, S. Macura, J. Am. Chem. Soc. 1995, 117, 405.
- [15] F. Cordier, S. Grzesiek, J. Am. Chem. Soc. 1999, 121, 1601.
- [16] C. Scheurer, R. Brüschweiler, J. Am. Chem. Soc. 1999, 121, 8661.
- [17] H. Benedict, I. G. Shenderovich, O. L. Malkina, V. G. Malkin, G. S. Denisov, N. S.; Golubev, H.-H. Limbach. J. Am. Chem. Soc. 2000, 122, 1979.
- [18] J. E. Del Bene, S. A. Perera, R. Bartlett, J. Am. Chem. Soc. 2000, 122, 3560.
- [19] J. E. Del Bene, R. J. Bartlett, J. Am. Chem. Soc. 2000, 122, 10480.
- [20] W. D. Arnold, E. Oldfield, J. Am. Chem. Soc. 2000, 122, 12835.
- [21] M. Barfield, A. J. Dingley, J. Feigon, S. Grzesiek, J. Am. Chem. Soc. 2001, 123, 4014.
- [22] K. Chapman, D. Crittenden, J. Bevitt, M. J. T. Jordan, J. E. Del Bene, J. Phys. Chem. A 2001, 105, 5422.
- [23] J. S.-S. Toh, M. J. T. Jordan, B. C. Husowitz, J. E. Del Bene J. Am. Chem.Soc. 2001, 123, 10906.
- [24] J. Czernek, R. Brüschweiler, J. Am. Chem. Soc. 2001, 123, 11079.
- [25] A. Bagno, G. Saielli, G. Scorrano, Angew. Chem., Int. Ed. 2001, 40, 2532.
- [26] S. J. Wilkens, M. W. Westler, F. Weinhold, J. L. Markley, J. Am. Chem. Soc. 2002, 124, 1190.
- [27] M. Barfield, J. Am. Chem. Soc. 2002, 124, 4158.
- [28] NBO ver. 3.1., E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold.
- [29] J. A. Pople, J. W. McIver Jr., N. S. Ostlund, J. Chem. Phys. 1968, 49, 2960.
- [30] J. A. Pople, J. W. McIver Jr. N. S. Ostlund, J. Chem. Phys. 1968, 49, 2970.
- [31] T. Helgaker, M. Jaszunski, K. Ruud, Chem. Rev. 1999, 99, 293.
- [32] A. Bagno, Chem. Eur. J. 2002, 7, 1652.
- [33] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- [34] V. G. Malkin, O. L. Malkina, D. R. Salahub, Chem. Phys. Lett. 1994, 221, 91.

3272

- [35] J. E. Peralta, R. H. Contreras, J. P. Snyder, Chem. Commun. 2000, 2025.
- [36] F. B. Mallory, C. W. Mallory, K. E. Butler, L. B. Lewis, A. Q. Xia, E. D. Luzik Jr., L. E. Fredenburgh, M. M. Ramanjulu, Q. N. Van, Q. N.; M. M. F. D. A. Freed, C. C. Wray, C. Hann, M. Nerz-Stormes, P. J. Carrol. L. E. Chirlian, J. Am. Chem. Soc. 2000, 122, 4108.
- [37] A. L. Esteban, M. P. Galache, F. Mora, E. Díez, J. Casanueva, J. S. Fabián, V. Barone, J. E. Peralta, R. H. Contreras, J. Phys. Chem. A 2001, 105, 5298.
- [38] S. J. Wilkens, M. W. Westler, J. L. Markley, F. Weinhold, J. Am. Chem. Soc. 2001, 123, 12026.
- [39] M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1995.

Received May 16, 2003